Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem
That's a combined mass of 380,000,000 kg of pen15s.
Now we must make an approximation. For simplicity's sake, let us assume the pen15 are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated pen15 ring is 6,371,000 + 0.80 = 6,371,000.8 meters.
I = 380,000,000*6,371,000.8^2 = 1.5424*10^22
The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.
L=I*omega= 8.04×10^37 kg*m^2 * 7.2921159 × 10^−5 = 5.86286*10^33.
5.86286*10^33 = (8.04×10^37 + 1.5424*10^22) *omega
-> solve for omega = 7.292115899502489e-05
This is 4.97511e-15 rad/s slower than earth's original rotation. This translates to 6.752*10^-10 seconds = 0.6752 nanoseconds longer per day.
If we all have a boner at the same time, we will collectively be able to last 0.6752 nanoseconds longer in bed. Stay hard fellas.