Instalar o Steam
Iniciar sessão
|
Idioma
简体中文 (Chinês Simplificado)
繁體中文 (Chinês Tradicional)
日本語 (Japonês)
한국어 (Coreano)
ไทย (Tailandês)
Български (Búlgaro)
Čeština (Checo)
Dansk (Dinamarquês)
Deutsch (Alemão)
English (Inglês)
Español-España (Espanhol de Espanha)
Español-Latinoamérica (Espanhol da América Latina)
Ελληνικά (Grego)
Français (Francês)
Italiano (Italiano)
Bahasa Indonesia (Indonésio)
Magyar (Húngaro)
Nederlands (Holandês)
Norsk (Norueguês)
Polski (Polaco)
Português (Brasil)
Română (Romeno)
Русский (Russo)
Suomi (Finlandês)
Svenska (Sueco)
Türkçe (Turco)
Tiếng Việt (Vietnamita)
Українська (Ucraniano)
Relatar problema de tradução
That's a combined mass of 380,000,000 kg of pen15s.
Now we must make an approximation. For simplicity's sake, let us assume the pen15 are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated pen15 ring is 6,371,000 + 0.80 = 6,371,000.8 meters.
I = 380,000,000*6,371,000.8^2 = 1.5424*10^22
The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.
L=I*omega= 8.04×10^37 kg*m^2 * 7.2921159 × 10^−5 = 5.86286*10^33.
5.86286*10^33 = (8.04×10^37 + 1.5424*10^22) *omega
-> solve for omega = 7.292115899502489e-05
This is 4.97511e-15 rad/s slower than earth's original rotation. This translates to 6.752*10^-10 seconds = 0.6752 nanoseconds longer per day.
If we all have a boner at the same time, we will collectively be able to last 0.6752 nanoseconds longer in bed. Stay hard fellas.