Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem
⠄⡜⠸⢰⡐⠄⠄⠄⠄⠄⣇
⠄⣯⡏⣘⣎⣂⣵⢀⢾⡄⡼
⠄⠏⣎⠟⣻⣿⢻⠃⢈⡝
⠄⠄⠹⠋⢉⣵⣮⣰⡚
⠄⠄⠄⠄⠸⣿⣿⡏⣷⢹⣦
⠄⠄⠄⢀⡄⣿⣿⡇⣾⡏⣻⡄
⠄⠄⢴⣿⣿⢹⣿⡇⣿⣧⢿⣇
⠄⠸⣸⣿⣿⢸⣿⡇⣿⣿⣟⢿⣦⣀
⠄⠄⠈⠛⠛⠈⣿⣷⢻⡿⢟⣣⣭⣭⣝⡲⢶⣶⣤⣄⡀
⠄⠄⠄⠄⠄⠸⣿⢟⣤⣾⣿⣿⣿⣿⣿⣿⣷⡹⣿⣿⣿⣷⣄
⠄⠄⠄⠄⠄⢀⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⢻⣿⣿⣿⣿⣆
⠄⠄⠄⢀⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠱⡜⣿⣿⣿⣿⡿⣾⣷⠄
⠄⣠⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢛⣵⠇⡇⣿⣿⣿⢟⣵⢸⣿⡇
⣼⣿⣭⣶⣶⣶⣶⣝⡻⣿⣿⡿⠿⡛⠁⠄⠁⠄⠄⠄⠄⠄⠄⣵⣿⣿⠟
⠹⣿⣿⣿⣿⣿⣿⣿⣿⣶⣶⣴⡸⣿⣧⣀⡤⣤⠄⠄⠄⠄⠄⢷⢰⠞⠄
nice ♥♥♥♥ bro
Considering this is a way to get antibiotics into your system without paying $20000 for a single dose from a "certified doctor", I highly recommend it. 11/10 would blow my ass out with a diarrhea flood of biblical proportions again.
⠀⠀⠀⠀⢀⣿⠇⠀⢀⣴⣶⡾⠿⠿⠿⢿⣿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⣀⣀⣸⡿⠀⠀⢸⣿⣇⠀⠀⠀⠀⠀⠀⠙⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⣾⡟⠛⣿⡇⠀⠀⢸⣿⣿⣷⣤⣤⣤⣤⣶⣶⣿⠇⠀⠀⠀⠀⠀⠀⠀⣀⠀⠀
⢀⣿⠀⢀⣿⡇⠀⠀⠀⠻⢿⣿⣿⣿⣿⣿⠿⣿⡏⠀⠀⠀⠀⢴⣶⣶⣿⣿⣿⣆
⢸⣿⠀⢸⣿⡇⠀⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⣿⡇⣀⣠⣴⣾⣮⣝⠿⠿⠿⣻⡟
⢸⣿⠀⠘⣿⡇⠀⠀⠀⠀⠀⠀⠀⣠⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠁⠉⠀
⠸⣿⠀⠀⣿⡇⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠟⠉⠀⠀⠀⠀
⠀⠻⣷⣶⣿⣇⠀⠀⠀⢠⣼⣿⣿⣿⣿⣿⣿⣿⣛⣛⣻⠉⠁⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢸⣿⣀⣀⣀⣼⡿⢿⣿⣿⣿⣿⣿⡿⣿⣿⡿
on analysis data which are available in an existing dataset. For a small/moderate sized
dataset, R base commands are convenient to apply. However, for large sized data sets (with
many rows and columns), running an R base code may require a long time and inefficient. In
this case, we will work with a package “dplyr” for faster and more efficient computing tools.