Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem
cl_updaterate 66
cl_cmdrate 66
cl_interp 0.030
B* <= n , B*εL(n)
B* < n+ , B* <= n, snnd <
B*εn+ , B* < n+
n+ is natural , n is natural
n+ is ordinal , n+ is natural
n+ is complete , n+ is ordinal
B* is subset of n+ , B*εn+, n+ is complete
DεB* , D < B*
Dεn+ , DεB*, B* is subset of n+
D < n+ , Dεn+
D <= n , D < n+, snnd <
DεL(n) , D <= n, ~φ(D), definition of L(n)
B* is natural , B* <= n, 5.21
D is natural , DεB*, 5.21
B*εD v B* = D v DεB* , B* is natural, D is natural, trichotomy
~(B*εD v B* = D) , DεB*, disjunctive syllogism on trichotomy
~B*εD ^ ~(B* = D)
~(D = B*)
B*(εn+)D , DεL(n), B*εL(n), B* is the (εn+)-first of L(n)
B*εn+ ^ Dεn+ ^ B*εD , B*(εn+)D, 5.1
RAA , ~B*εD
D = B*
RAA , ~(B* = D)