Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem
___________________________######_________
____________________________####__________
_____________________________##___________
___________________________######_________
__________________________#######_________
__####__________________#########_________
_######________________###_######_________
_######_______________###__######_________
__####_______________###___ ######_________
_____##################____ ######_________
_____##################+REP######________
______#################____######_________
_______###_______#####_____######_________
______###_______#####______######_________
_____###________#####______######_________
#######_________##########_#############
train_X = np.array(names[:size * 2/3])
train_y = np.array(indStates[:size * 2/3])
test_X = np.array(names[size * 2/3:])
test_y = np.array(indStates[size * 2/3:])
X = tf.placeholder(tf.float32, [None, max_sequence_length, num_input])
y = tf.placeholder(tf.float32, [None, num_classes])
weights = weight_variable([num_hidden, num_classes])
biases = bias_variable([num_classes])
rnn_cell = tf.nn.rnn_cell.BasicRNNCell(num_hidden)
out, states = tf.nn.dynamic_rnn(rnn_cell, X, dtype = tf.float32)
y_ = tf.matmul(outputs[:,-1,:], weights) + biases
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = y_, labels = y))
train_step = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(loss)